October Math Gems

Problem of the week 13

§1 Problems

Problem 1.1. If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5

Problem 1.2. If p_1 and p_2 are length of the perpendicular from the origin on the two lines given by $x \sec A + y \csc A = m$ and $x \cos A + y \sin A = m \cos 2A$ then $4(p_1)^2 + (p_2)^2 = ...$ with respect to m

Problem 1.3. If (4-,5) is one vertex and 7x - y + 8 = 0 is one diagonal of a square, then the equation of the other diagonal is....

Problem 1.4. A triangle has vertices A(0,b); B(0,0); C(a,0). If its median AD and BE are mutually perpendicular then $a = \dots$ with respect to b

Problem 1.5. Points (3,3),(h,0),(0,k) are collinear and $\frac{a}{h} + \frac{b}{k} = \frac{1}{3}$. Then what is the value of a,b

Problem 1.6. Let p(x) be a cubic polynomial with zeros α, β, γ . If $\frac{p(\frac{1}{2}) + p(\frac{-1}{2})}{p(0)} = 100$ find $\sqrt{\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}}$

Problem 1.7. Find the value of a and b so that $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$

Problem 1.8. Consider the equation $x^3 - (1 + \cos \theta + \sin \theta)x^2 + (\cos \theta \sin \theta + \cos \theta + \sin \theta)x - \sin \theta \cos gq = 0$ The roots of equation are x_1, x_2, x_3 Find the value of $(x_1)^2 + (x_2)^2 + (x_3)^2$

Problem 1.9. The inverse function of the function $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} =$

Problem 1.10. Let $f(x) = \frac{ax+b}{cx+d}$ then $f\circ f(x) = x$ Find d

Problem 1.11. Let $f(x) = \frac{ax}{x+1}$ for x not equal -1. Then what is the value of a if f(f(x)) = x

Problem 1.12. The function f is one-to-one and the sum of all the intercepts of the graph is 5. The sum of all intercepts of the graph $y = f^{-1}(x)$ is

1

Problem 1.13. $\frac{f(x)}{g(x)} = x - 2$ with remainder 4 - 2x Find g(x) if $f(x) = x^3 - 3x^2 + x + 2$

Problem 1.14. The expansion $\frac{1}{\sqrt{4x+1}}((\frac{1+\sqrt{4x+1}}{2})^2-(\frac{1-\sqrt{4x-1}}{2})^2)$ is a polynomial of x degree =

Problem 1.15. *b*, *a* are zeros of $h(x) = 3x^2 - 6x + 12$ find the value of $a^{-1} + b^{-1}$

Problem 1.16. If α, β, γ are zeros of polynomial $x^3 - x - 1$, then the value of $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$

Problem 1.17. suppose f(x) = ax + b and g(x) = bx + a where a, b are positive integers. If f(g(50)) - g(f(50)) = 28 then the product of ab cam have the value of

Problem 1.18. If f(x) = px + q and f(f(f(x))) = 8x + 21 where p, q are real number, then p + q =

Problem 1.19. The sum of n terms of two arithmetic series are in the ratio of 2n + 3: 6n + 5 then the ratio for their $13^{th}termsis$

Problem 1.20. The p^{th} term of an arithmetic progression is q and the q^{th} term is p the the 10^{th} term= (with respect to p,q)